Handling missing data with SciKit SimpleImputer

When working on data science projects, it’s very likely that you’ll be encountering missing data in your columns. It’s not ideal to disregard or take out all the rows containing missing data for any project. Other columns for the same row where the data is missing can be critical for the data preparation state, so it’ll be wiser to infer or find a way to fill in the missing values in our dataset for a better outcome.

Read More